1,4-Conjugate addition of higher-order cyanocuprates to 3-alkyl substituted 2(5H)-furanones

Felix S. Pashkovsky,*a Fedor A. Lakhvich,a Alfredo Riccib and Mauro Comes-Franchinib

^a Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, 220141 Minsk, Republic of Belarus. Fax: +7 0172 63 7274; e-mail: evk@ns.iboch.ac.by

^b Dipartimento di Chimica Organica "A.Mangini", Facoltà di Chimica Industriale, Università di Bologna, 40136 Bologna, Italy. Fax: +39 051 209 3654; e-mail: ricci@ms.fci.unibo.it

10.1070/MC2001v011n03ABEH001397

The results of model investigations concerning 1,4-addition of higher-order cyanocuprate (n-Bu)₂Cu(CN)Li₂ to 3-alkyl-substituted butenolides are presented.

The 1,4-conjugate addition of different nucleophiles to 2(5H)-furanones (butenolides) is widely used for preparing compounds with a γ -butyrolactone ring. Among Michael donors, organocopper reagents are of special importance because their nucleophilic addition to unsubstituted or 5-alkyl-substituted butenolides is a key step in the synthesis of naturally occurring products and their congeners. Surprisingly, almost nothing is known about the 1,4-addition of organocopper species to 3-alkyl-substituted butenolides in which an alkyl moiety is directly attached to the conjugated double bond of the heterocycle. Only one example of the Michael addition of the diarylmethane anion to 3-methyl-2(5H)-furanone in the presence of catalytic amounts of copper(I) iodide has been described.

In connection with the synthesis of biologically active 10-oxa-prostaglandin analogues, we required a method for 1,4-conjugate addition of alkyl and alkenyl moieties to the butenolides with a preformed α -prostanoid chain. Therefore, firstly we attempted model investigations concerning the Michael addition of organocopper reagents to 3-alkyl-substituted 2(5H)-furanones. In our hands, the use of butyllithium in the presence of catalytic amounts of copper(I) iodide,⁴ as well as the corresponding Gilman reagent, in this reaction was unsatisfactory. This is in accordance with the published data concerning low reactivity of α , β -unsaturated esters⁵ and 5-alkyl-2(5H)-furanones³ towards lower-order dialkyl cuprates. On the contrary, higher-order cyanocuprates are suitable reagents for this synthetic purpose.

In this communication, we report the results of our investigations concerning the 1,4-addition of higher-order dibutylcyanocuprate (*n*-Bu)₂Cu(CN)Li₂ to the 3-alkyl-substituted butenolides. The presence of oxygen in the five-membered ring reduces the reactivity of butenolides as Michael acceptors as compared to their carbocyclic counterparts.^{3,5} We have found that the use of diethyl ether as a solvent in this reaction is essential. When

THF or a mixture of diethyl ether and THF was employed, the reaction proceeded very slowly with almost quantitative recovery of the starting materials. Even in diethyl ether, higher temperatures (gradual increase from -75 to -15 °C) and prolonged reaction times (4-5 h) are necessary for completion of the reaction. The 1,4-addition of an alkyl moiety to 5-unsubstituted butenolides results in the formation of cis- and trans-isomers of the corresponding 3,4-disubstituted γ-butyrolactones, the *trans*-isomers being the major components. Elongation of a 3-alkyl substituent in the butenolide leads to an increased concentration of the transisomer. For example, the reaction of 3-methylfuran-2(5H)-one 1a with 1.2 equiv. of higher-order dibutylcyanocuprate gives rise to the corresponding mixture of diastereomeric lactones 2a and 3a in 80% combined yields; the *cis:trans* ratio of 2a/3a is 1.1:2.0. The cis-isomer showed a lower vicinal coupling constant $J_{ ext{H-3/H-4}}$ 7.6 Hz in the ¹H NMR spectrum as compared with that of the trans-isomer (11.5 Hz). The 3-alkylaryl-substituted butenolide 1b reacts with 1.2 equiv. of the same cuprate to give a mixture of diastereomeric 3-arylalkyl-4-butyl lactones **2b** and **3b** (71% yield) separable by column chromatography in an approximate cis:trans ratio of 2b/3b = 1:3. The stereochemical assignment of 2b, 3bis based on the observation that $J_{\text{H-4/H-5}}$ for the *trans*-isomers is higher (8.5 Hz for $J_{\text{a/a}}$ and 7.0 Hz for $J_{\text{a/e}}$) as compared with those for the *cis*-isomers (6.0 and 5.5 Hz, respectively). On the contrary, in the case of sterically hindered 3,5-dialkyl-substituted butenolide 1c, 1,4-addition of a butyl group proceeded stereoselectively to give only all-*trans*-trialkyl lactone **2c** in 66% yield. The vicinal coupling constant $J_{\text{H-5/H-4}}$ 8.4 Hz in the ¹H NMR spectrum of lactone 2c supports the trans-orientation of methyl and butyl substituents.6

It follows from these experiments that the reaction of an almost equal amount of higher-order cyanocuprate with butenolides bearing an ester group in the side chain is chemoselective and extremely useful for the selective transformations of functionalised 2(5H)-furanones. Only small amounts of exhaustively alkylated products **4b,c** (4 and 7%, respectively) were isolated from the reaction mixtures. Trialkylated materials **4b,c** are the main products when a large excess (3–4 equiv.) of the cuprate reagent is used.[†]

General procedure. To a stirred slurry of 54 mg (0.6 mmol) of CuCN in 8 ml of diethyl ether cooled at -78 °C, in an argon atmosphere, 0.75 ml (1.2 mmol) of a 1.6 M BuLi solution in hexane was added dropwise with a syringe. Then, the reaction mixture was allowed to gradually warm up to -30 °C. During this time, the clear yellowish solution of higher-order cyanocuprate was formed. To the resulting solution of the complex cooled to -78 °C 50 mg (0.5 mmol) of 3-methyl-2(5H)-furanone 1a in 2 ml of diethyl ether was added dropwise with a syringe. In the case of butenolides 1b,c sparingly soluble in Et₂O, 0.5 mmol of a compound was added to the reaction vessel in one portion under a stream of argon. The reaction temperature was gradually raised from -78 °C to -15 °C for 4–5 h with stirring. The reaction mixture was cooled again to –78 $^{\circ}\text{C}$ and quenched with saturated aqueous NH₄Cl. The cooling bath was removed, and the mixture was stirred until room temperature was reached. The ether layer was separated, the aqueous phase was extracted with diethyl ether (2×25 ml) and the combined ether extracts were dried with MgSO₄. The residue obtained after evaporation of the solvent was separated by column chromatography (silica gel, Et₂O-hexane).

The structures of **4b,c** were unambiguously assigned on the basis of ${}^{1}H$ NMR spectra and characteristic peaks of $[M-H_{2}O]^{+}$ ions in their mass spectra. ‡ Interestingly, trialkylated product **4b** had only the *trans*-orientation of substituents at C-3 and C-4.

We also found that 3-alkyl-substituted butenolides are unreactive towards Grignard-derived higher-order cyanocuprate: even at room temperature the reaction with **1a** was extremely slow as compared to decomposition of the complex.

This work was supported by INTAS (grant no. 97-0084).

 ‡ For **2a**: colourless oil. 1 H NMR (300 MHz, CDCl₃) δ : 0.91 (t, 3H, Me, J 7.0 Hz), 1.25 (d, 3H, Me, J 7.6 Hz), 1.25–1.48 (m, 6H, 3CH₂), 2.03–2.15 (m, 1H, H-4), 2.15 (dq, 1H, H-3, J 11.5, 7.6 Hz), 3.77 (dd, 1H, H-5, J 8.5, 8.5 Hz), 4.38 (dd, 1H, H-5, J 8.5, 7.0 Hz). IR (CCl₄, ν /cm⁻¹): 1777 (C=O lactone). MS, m/z: 156 [M]+. Found (%): C, 69.09; H, 10.29. Calc. for C₉H₁₆O₂ (%): C, 69.19; H, 10.32.

For **2b**: colourless oil. ¹H NMR (300 MHz, CDCl₃) δ : 0.88 (t, 3H, Me, J 7.0 Hz), 1.16–1.43 (m, 6H, 3CH₂), 1.50–1.65 (m, 1H), 1.70 (m, 2H, CH₂), 1.79–1.93 (m, 1H), 2.11–2.25 (m, 2H, H-4, H-3), 2.70 (t, 2H, CH₂Ar, J 7.5 Hz), 3.78 (dd, 1H, H-5, J 8.5, 8.5 Hz), 3.88 (s, 3H, CO₂Me), 4.35 (dd, 1H, H-5, J 8.5, 7.0 Hz), 7.24 (d, 2H_{arom}, J 8.4 Hz), 7.95 (d. 2H_{arom}, J 8.4 Hz). IR (CCl₄, ν /cm⁻¹): 1780 (C=O lactone), 1720 (C=O ester), 1605. MS, m/z: 318 [M]+. Found (%): C, 71.64; H, 8.49. Calc. for C₁₉H₂₆O₄ (%): C, 71.67; H, 8.23.

For **2c**: colourless oil. ¹H NMR (300 MHz, CDCl₃) δ : 0.89 (t, 3H, Me, J 6.5 Hz), 1.18–1.36 (m, 4H, 2CH₂), 1.39 (d, 3H, Me, J 6.3 Hz), 1.48 (m, 2H, CH₂), 1.68–1.80 (m, 4H, 2CH₂), 1.84–1.96 (m, 1H, H-4), 2.28–2.36 (m, 1H, H-3), 2.70 (m, 2H, CH₂Ar), 3.90 (s, 3H, CO₂Me), 4.12 (dq, 1H, H-5, J 8.4, 6.3 Hz), 7.26 (d, 2H_{arom}, J 8.4 Hz), 7.96 (d, 2H_{arom}, J 8.4 Hz). IR (CCl₄, ν /cm⁻¹): 1774 (C=O lactone), 1724 (C=O ester), 1609. MS, m/z: 332 [M]⁺. Found (%): C, 72.40; H, 8.44. Calc. for C₂₀H₂₈O₄ (%): C, 72.26; H, 8.49.

For **3a**: colourless oil. ¹H NMR (300 MHz, CDCl₃) δ : 0.91 (t, 3H, Me, J 7.0 Hz), 1.16 (d, 3H, Me, J 7.6 Hz), 1.27–1.48 (m, 4H), 1.58–1.71 (m, 2H), 2.47 (m, 1H, H-4), 2.66 (quint, 1H, H-3, J 7.6, 7.6 Hz), 4.00 (dd, J 8.5, 5.5 Hz, 1H, H-5), 4.27 (dd, 1H, H-5, J 8.5, 6.0 Hz). IR (CCl₄, ν /cm⁻¹): 1777 (C=O lactone). MS, m/z: 156 [M]*. Found (%): C, 68.82; H, 10.31. Calc. for C₉H₁₆O₂ (%): C, 69.19; H, 10.32.

For **3b**: colourless oil. ¹H NMR (300 MHz, CDCl₃) δ : 0.86 (t, 3H, Me, J 7.0 Hz), 1.10–1.35 (m, 6H, 3CH₂), 1.40–1.53 (m, 1H), 1.61–1.75 (m, 2H, CH₂), 1.80–1.93 (m, 1H), 2.38–2.55 (m, 2H, H-4, H-3), 2.71 (m, 2H, CH₂Ar), 3.89 (s, 3H, CO₂Me), 4.04 (dd, 1H, H-5, J 8.5, 5.5 Hz), 4.19 (dd, 1H, H-5, J 8.5, 6.0 Hz), 7.24 (d, 2H_{arom}, J 8.4 Hz), 7.95 (d, 2H_{arom}, J 8.4 Hz). IR (CCl₄, ν /cm⁻¹): 1780 (C=O lactone), 1720 (C=O ester), 1605. MS, m/z: 318 [M]+. Found (%): C, 71.61; H, 8.17. Calc. for C₁₉H₂₆O₄ (%): C, 71.67; H, 8.23.

References

- (a) T. Jaworsky, W. Kolodzejek, J. Prejzner and M. Wlostowsky, *Polish J. Chem.*, 1981, 55, 1321; (b) V. Alcazar, J. R. Moran and J. de Mendoza, *Tetrahedron Lett.*, 1995, 36, 3941; (c) M. Fiorenza, A. Ricci, M. N. Romanelli, M. Taddei, P. Dembech and G. Seconi, *Heterocycles*, 1982, 19, 2327; (d) S. W. McCombie, W. Stuart, J. R. Tagat, W. A. Metz, D. Nazareno and M. S. Puar, *Tetrahedron*, 1993, 49, 8073; (e) P. Lakshmipathi and A. W. R. Rao, *Tetrahedron Lett.*, 1997, 38, 2551.
- 2 S. Tsuboi, J.-I. Sakamoto, H. Jamashita, T. Sakai and M. Utaka, J. Org. Chem., 1998, 63, 1102.
- 3 A. M. Gilbert, R. Miller and W. D. Wulff, Tetrahedron, 1999, 55, 1607.
- 4 K. Cruz-Almanza and F. P. Higareda, Heterocycles, 1992, 34, 2323.
- 5 B. H. Lipshutz, Synthesis, 1987, 325.
- 6 C. Gunther and A. Mosandl, Liebigs Ann. Chem., 1986, 2112.

Received: 10th November 2000; Com. 00/1723

For **4b**: colourless oil. $^1\mathrm{H}$ NMR (300 MHz, CDCl₃) δ : 0.77–0.92 (m, 9H, 3Me), 0.95–1.09 (m, 2H), 1.14–1.40 (m, 10H), 1.50–1.65 (m, 4H), 1.65–1.90 (m, 7H), 2.10–2.25 (m, 2H, H-4, H-3), 2.61 (t, 2H, CH₂Ar, J 7.5 Hz), 3.77 (dd, 1H, H-5, J 8.5, 8.5 Hz), 4.34 (dd, 1H, H-5, J 8.5, 7.0 Hz), 7.12 (d, 2H_{arom}, J 8.4 Hz), 7.25 (d, 2H_{arom}, J 8.4 Hz). IR (CCl₄, ν/cm^{-1}): 1781 (C=O lactone). MS, m/z: 384 [M – H₂O]+. Found (%): C, 77.51; H, 10.49. Calc. for $C_{26}\mathrm{H}_{42}\mathrm{O}_{3}$ (%): C, 77.56; H, 10.51.

For **4c**: colourless oil. 1 H NMR (300 MHz, CDCl₃) δ : 0.80–0.98 (m, 9H, 3Me), 0.98–1.10 (m, 2H), 1.15–1.36 (m, 10H), 1.38 (d, 3H, Me, J 6.3 Hz), 1.43–1.53 (m, 2H), 1.56–1.65 (m, 2H), 1.65–1.91 (m, 7H), 2.27–2.35 (m, 1H, H-3), 2.56–2.76 (m, 3H), 4.13 (dq, 1H, H-5, J 8.4, 6.3 Hz), 7.13 (d, 2H_{arom}, J 8.4 Hz), 7.28 (d, 2H_{arom}, J 8.4 Hz). IR (CCl₄, ν /cm⁻¹): 1774 (C=O lactone). MS, m/z: 398 [M – H₂O]+. Found (%): C, 77.75; H, 10.65. Calc. for C₂₇H₄₄O₃ (%): C, 77.84; H, 10.64.